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Abstract

This paper delves into the novel integration of multi-modal models,
particularly RemoteCLIP, with Model-Agnostic Meta-Learning (MAML)
in the context of the Functional Map of the World (fMoW) dataset, to
address the challenge of few-shot learning in remote sensing scene classifi-
cation. Central to this study is the exploration of how multi-modal mod-
els, which synergize visual and semantic data, can be effectively adapted
to sparse data scenarios prevalent in remote sensing.

The RemoteCLIP model, selected for its advanced vision-language pro-
cessing capabilities, is at the forefront of this study. It is based on the
CLIP framework and employs a ResNet-50 image encoder. The model’s
intrinsic ability to process language and visual information enables it to
excel in various tasks, including zero-shot image classification and object
counting. To adapt and evaluate RemoteCLIP, the fMoW dataset was em-
ployed, comprising over 1 million images from more than 200 countries,
each enriched with detailed bounding box annotations across 63 diverse
categories. This dataset’s extensive global coverage and rich metadata
make it an ideal resource for training and testing the model.

Integrating MAML with RemoteCLIP was a strategic decision aimed
at enhancing the model’s few-shot learning capability. MAML’s flexibil-
ity and effectiveness in rapid adaptation to new tasks complement Re-
moteCLIP’s multi-modal framework, creating a robust system for remote
sensing scene classification.

The study’s experimental phase involved zero-shot geography probing,
semantic injection, and few-shot fine-tuning, each designed to test and
enhance RemoteCLIP’s geographic knowledge and classification accuracy.
The results from these experiments are noteworthy, demonstrating that
incorporating semantic metadata with visual data significantly improves
the model’s performance in few-shot learning scenarios. Particularly, the
model’s ability to understand and integrate geographic information into
its learning process was substantially enhanced. This finding is the key
contribution of our study, demonstrating that semantic metadata, when
skillfully integrated with visual data, can markedly enhance the perfor-
mance of few-shot learning models. While this study is a preliminary
investigation of these behaviors, the results shown should merit further
exploration of these techniques such that we can better leverage remote
sensing data to create intelligent machinery for critical applications in
data-sparse regimes.
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1 Introduction

In recent years, the field of machine learning has experienced significant ad-
vancements, with vision emerging as a notably dynamic area. The evolution
from convolutional networks to sophisticated deep learning frameworks has pro-
pelled image models to reach, and in some instances surpass, human-level per-
formance across diverse tasks [6]. The advent of ImageNet was a landmark
moment, highlighting the need for large-scale data to train Artificially Intelli-
gent systems, thus heralding a new era in machine learning [4].

Today’s most advanced models are trained on datasets far larger than those
envisioned by the field’s early pioneers. However, a critical challenge persists:
learning from a limited supply of data, known as ”few-shot” learning. While
humans excel at this intuitively from a young age, it remains a complex problem
for machines [7]. Domains like language modeling may face fewer hurdles in
few-shot learning, but in fields like remote sensing, the scarcity of high-quality,
labeled data is a significant challenge [20].

Remote sensing data, often expensive and time-consuming to collect and
label, offers invaluable insights for critical applications such as climate change
monitoring and assessing environmental impacts [16]. This underscores the
urgency and importance of developing efficient learning methods for sparse data.

This paper explores new directions in learning from limited data within the
remote sensing context. We note that multi-modal models, which integrate
visual and semantic data, are increasingly adept at image classification [12].
Additionally, satellite imagery is often accompanied by rich metadata, present-
ing an opportunity to leverage this information. This study investigates whether
utilizing semantic metadata to fine-tune advanced remote sensing multi-modal
models can enhance their few-shot learning capabilities. Our aim is to assess if
this approach allows models to effectively learn from sparse data by integrating
both visual and semantic cues.

Positioned at the intersection of few-shot learning, machine learning, and
multi-modal models, this study contributes to the advancement of efficient learn-
ing methodologies in remote sensing. The ability to maximize the value of lim-
ited data in this field can have significant and far-reaching impacts, particularly
in pressing global issues such as environmental monitoring and climate change.

2 Related Works

2.1 Remote Sensing Scene Classification

Remote sensing scene classification has significantly evolved with the integra-
tion of deep learning techniques. The field has seen innovative approaches in
feature selection, attention mechanisms, and network architecture adaptation.
For instance, Zou et al. in ”Deep Learning Based Feature Selection for Re-
mote Sensing Scene Classification” [24] demonstrated the effectiveness of deep-
learning-based feature selection in high-resolution satellite image classification.
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Another noteworthy development is the introduction of the Multi-Branch Local
Attention Network by Chen et al. in ”Remote Sensing Scene Classification via
Multi-Branch Local Attention Network” [2], emphasizing the role of attention
mechanisms in complex scene interpretation. Additionally, the exploration of
CNN architectures, as highlighted by Broni-Bediako et al. in ”Searching for
CNN Architectures for Remote Sensing Scene Classification” [1], and the in-
novative use of relation-attention models in Wang et al.’s ”Relation-Attention
Networks for Remote Sensing Scene Classification” [19], signify the ongoing ad-
vancements in this domain.

2.2 Few-Shot Learning & Meta Learning

Few-shot learning is revolutionizing the way models generalize from limited data.
A landmark study by Radford et al., ”Learning Transferable Visual Models
From Natural Language Supervision” [12], introduced the CLIP model, blending
language and vision models to understand and classify images with minimal
training data. This approach is especially pertinent in remote sensing, where
labeled data can be scarce. Other significant contributions include Vinyals et
al.’s ”Matching Networks for One Shot Learning” [17], which introduced a novel
approach for one-shot learning, and Snell et al.’s ”Prototypical Networks for
Few-shot Learning” [15], which emphasized the role of metric learning in few-
shot classification tasks.

2.3 Few-Shot Remote Sensing Scene Classification

Few-shot remote sensing scene classification, an emerging field crucial for in-
terpreting limited data, is being transformed by advanced meta-learning tech-
niques and innovative approaches. Zhang et al. in ”RS-SSKD: Self-Supervision
Equipped with Knowledge Distillation for Few-Shot Remote Sensing Scene Clas-
sification” [23] present a novel two-branch network that effectively utilizes self-
supervision and knowledge distillation, enhancing classification performance in
data-scarce scenarios. This approach is further complemented by Xing et al.’s
”Learning to Cooperate: Decision Fusion Method for Few-Shot Remote-Sensing
Scene Classification” [22], which introduces a decision fusion model using pre-
trained feature extractors for enhanced feature discrimination.

Li et al. in ”SCL-MLNet: Boosting Few-Shot Remote Sensing Scene Classi-
fication via Self-Supervised Contrastive Learning” [10] integrate self-supervised
contrastive learning with few-shot classification algorithms, facilitating effective
learning from a limited number of annotated samples. A significant contri-
bution in this area is also seen in ”Meta-Learning for Few-Shot Land Cover
Classification” [13] by Rußwurm et al., which demonstrates the application of
meta-learning to land cover classification, showcasing the model’s adaptability
to new tasks with minimal examples.

Additionally, Li et al.’s ”RS-MetaNet: Deep Metametric Learning for Few-
Shot Remote Sensing Scene Classification” [9] introduces a metametric learning
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approach that shifts the focus from sample-level to task-level learning, signif-
icantly enhancing the model’s generalization capabilities. These studies col-
lectively represent a significant stride in few-shot remote sensing scene classi-
fication, showcasing the potential of combining meta-learning, self-supervision,
and advanced neural network architectures to address the challenges posed by
limited training data in remote sensing.

2.4 Multi-modal Models in Remote Sensing

In the evolving field of remote sensing, the integration of multi-modal mod-
els, particularly CLIP and Vision Transformers (ViT) [5], is revolutionizing
the analysis of satellite and aerial imagery. The study ”Learning Transferable
Visual Models From Natural Language Supervision” [12] by Radford et al. high-
lights CLIP’s effectiveness in bridging visual content with textual descriptions,
a pivotal advancement for classifying and interpreting remote sensing imagery.
Vision Transformers, known for treating images as sequences of patches, offer
a novel approach for global feature understanding, as seen in various studies,
enhancing scene analysis in remote sensing.

The potential of multi-modal approaches in remote sensing is further illus-
trated in works like ”Zero-Shot Multi-Modal Artist-Controlled Retrieval and
Exploration of 3D Object Sets” [14] by Schlachter et al. This study demon-
strates the versatility of multi-modal models in understanding complex datasets.
Additionally, the survey ”Large-scale Multi-modal Pre-trained Models: A Com-
prehensive Survey” [18] by Wang et al. underscores the growing importance of
these models in various domains, including remote sensing. Furthermore, Lee et
al.’s creation of the ”DialogCC: Large-Scale Multi-Modal Dialogue Dataset” [8]
opens possibilities for training remote sensing models on varied data, including
dialogues and imagery, potentially enhancing scene interpretation.

Overall, the adoption of multi-modal models like CLIP and ViT is leading
to more sophisticated and accurate remote sensing applications, significantly
enhancing our ability to analyze and understand Earth’s landscapes through
advanced satellite and aerial imagery.

2.5 Remote Sensing Foundation Models

These observations are further seen in the development of foundation models
specific to remote sensing, a potential game-changer for the field. Notable works
include ”DINO-MC: Self-supervised Contrastive Learning for Remote Sensing
Imagery with Multi-sized Local Crops” [21] by Caron et al., which explores self-
supervised learning for remote sensing imagery, and ”SatMAE: Pre-training
Transformers for Temporal and Multi-Spectral Satellite Imagery” [3] by He et
al., focusing on pre-training transformers for diverse satellite imagery types.
These studies highlight the potential of tailored foundation models in enhancing
the analysis and interpretation of remote sensing data.
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2.6 Summary

The convergence of few-shot learning, multi-modal learning, and domain-specific
modeling is significantly reshaping remote sensing. This synergy enhances data
interpretation by integrating the comprehensive analysis of multi-modal learn-
ing with the adaptability of few-shot learning. Domain-specific models further
refine this approach, offering tailored analyses for remote sensing data’s unique
demands.

These advancements represent a transformative shift, promising more in-
telligent, efficient, and contextually aware remote sensing technologies. This
integration heralds a new era in the field, leveraging the rich potential of re-
mote sensing data to deepen our understanding of the Earth’s landscapes and
phenomena.

3 Methods

3.1 RemoteCLIP

In this study, we implement the RemoteCLIP model as introduced in ”Remote-
CLIP: A Vision Language Foundation Model for Remote Sensing.” RemoteCLIP
is a pioneering model that integrates vision and language, designed to address
the limitations of traditional remote sensing models focused primarily on low-
level features.

3.1.1 Model Selection and Architecture

RemoteCLIP was selected due to its ease of implementation, robust training
on an expansive dataset, and promising results in preliminary evaluations. The
model is structured on the CLIP framework, utilizing a ResNet-50 image encoder
with 38M parameters, chosen for its computational practicality and efficiency.

3.1.2 Key Features of RemoteCLIP

1. Capability in Retrieval and Zero-Shot Applications: RemoteCLIP ex-
cels in tasks such as zero-shot image classification, few-shot classification,
image-text retrieval, and object counting. Its ability to understand lan-
guage enables it to perform these tasks effectively, making it suitable for
diverse downstream applications in remote sensing.

2. Training Methodology: The model employs the CLIP strategy, known for
its excellent generalization ability in vision-language tasks. It optimizes
the InfoNCE loss function to align image-text pairs and distinguish mis-
matches. This process involves a large-scale dataset to encode images and
texts into latent representations.

3. Data Scaling via Annotation Unification: A significant innovation in Re-
moteCLIP is its approach to scaling data using Annotation Unification.
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This method expands the training dataset by converting object bounding
box annotations into natural language captions, overcoming data scale
limitations.

4. Optimization and Training Data: The final training data comprises 165,745
images, each with five captions, resulting in 828,725 image-text pairs.
The optimization process is based on the ITRA codebase, developed from
OpenCLIP, and includes automatic mixed-precision and the Adam opti-
mizer.

3.1.3 Application in Remote Sensing

Given its recent introduction and the uncharted territory in its application, Re-
moteCLIP’s implementation in this study is exploratory. The model’s unique
ability to understand language and process visual features with rich semantics
offers an advanced approach to remote sensing scene classification, addressing
the challenges posed by limited annotated data and enhancing accuracy in var-
ious tasks.

In summary, the choice of the RemoteCLIP model, particularly its ResNet-50
variant, aligns with our objective to explore advanced, domain-specific solutions
in remote sensing, leveraging its multi-modal learning capabilities for efficient
and effective scene classification.

3.2 MAML

In this study, we have chosen to incorporate the Model-Agnostic Meta-Learning
(MAML) algorithm, as presented in ”Model-Agnostic Meta-Learning for Fast
Adaptation of Deep Networks” by Finn et al. (2017). MAML was selected for
its ease of implementation and its proven track record in the field, especially for
its effectiveness in few-shot learning scenarios.

3.2.1 Key Considerations for Choice of MAML:

1. Proven Effectiveness: MAML is widely recognized for its strong perfor-
mance in meta-learning, particularly in rapidly adapting to new tasks with
limited data. This aspect is pivotal for remote sensing applications, where
diverse and sometimes scarce data sets are common.

2. Simplicity and Flexibility: The straightforward implementation process of
MAML made it a practical choice for our project. Its flexibility allowed for
seamless integration with the RemoteCLIP model, which was crucial for
enhancing the model’s adaptability to a range of remote sensing scenes.

3. Model-Agnostic Nature: As a model-agnostic algorithm, MAML can be
applied to various architectures, including the complex structure of Re-
moteCLIP. This quality ensured that we could enhance RemoteCLIP’s
learning capability without extensive modifications to its architecture.
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3.2.2 Application in Remote Sensing

MAML’s ability to learn quickly from a small number of examples makes it
particularly suitable for our remote sensing classification task. In a field where
annotated data may be limited, MAML’s approach to learning provides a sig-
nificant advantage. It enables the RemoteCLIP model to adapt rapidly to new
tasks and scenarios, a key requirement for effective remote sensing analysis.

In summary, the integration of MAML into our study was a strategic decision
to leverage its meta-learning capabilities and enhance the performance of the
RemoteCLIP model in classifying remote sensing scenes. This combination aims
to develop a system that is not only robust and adaptable but also capable of
effectively handling the diverse challenges in remote sensing scene classification.

3.3 Functional Map of the World Dataset

In our study, we utilized the ”Functional Map of the World” (fMoW) dataset,
specifically chosen for its comprehensive collection of satellite images tailored to
advance machine learning models in remote sensing. This dataset is instrumen-
tal in classifying the functional purpose of buildings and land use from satellite
imagery.

3.3.1 Dataset Composition

The fMoW dataset includes over 1 million images from more than 200 countries.
Each image features at least one bounding box annotation, classified into one of
63 categories, including a ”false detection” category for content not fitting the
other 62 classifications. This extensive and diverse categorization is essential
for our study’s focus on a wide range of remote sensing scenarios.

3.3.2 Unique Features

Characterized by its global diversity, the fMoW dataset is enriched with detailed
metadata accompanying each image. This metadata includes vital information
such as location, sun angles, and physical sizes of the imaged objects or areas,
providing essential context for accurate predictions and classifications.

3.3.3 Dataset Version Utilized

For our experiment, the fMoW-rgb version was selected, comprising JPEG-
compressed images. This version aligns with our computational resources and
provides the necessary visual data for analysis. The fMoW-rgb includes RGB
channels extracted and saved in JPEG format, offering a practical yet compre-
hensive dataset for our remote sensing study.
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3.3.4 Rationale for Dataset Selection

The selection of the fMoW dataset, particularly the fMoW-rgb version, was
driven by its expansive size and diversity, making it an invaluable resource for
robust machine learning model development in remote sensing. Crucially, the
RemoteCLIP model had not been trained on this dataset, ensuring that our
model adaptation was challenged with entirely unseen data. This aspect is vital
for evaluating the model’s adaptability and generalization capability in new and
diverse remote sensing contexts.

In summary, the ”Functional Map of the World” dataset’s extensive coverage
and rich metadata make it an ideal choice for this study, providing a varied and
realistic platform for training and evaluating the RemoteCLIP model’s efficacy
in remote sensing scene classification.

3.4 Task Selection

To fine-tune RemoteCLIP for few-shot learning, we transformed the FMoW
dataset into a few-shot dataset, creating tasks that involve scene classification
across different countries. The objective is for the model to quickly adapt to a
new country based on a small set of labeled images and achieve high-accuracy
scene classification after a few fine-tuning iterations. Accordingly, we parti-
tioned the FMoW dataset by country and allocated them to train, val, and
test subsets.

A significant challenge was the dataset’s imbalance: some countries have
tens of thousands of labeled images, whereas others have as few as one. This
discrepancy, along with the socio-economic narratives it may imply, was not
addressed by the original authors. To establish equitable task distribution, we
implemented a task allocation algorithm that excluded countries with fewer
than 32 images and capped the maximum at 20,000 images per country. This
process excluded 29 countries and reduced the dataset by 75,402 images, leaving
324,053 images for training. Additionally, ensuring a balanced distribution of
tasks and images and uniform representation of categories across data splits was
paramount. We developed a novel allocation algorithm to meet these constraints
and achieve an optimal balance of tasks, images, and categories. The essence
of this method is presented in Algorithm 1, and a detailed abstraction of
the full implementation is provided in Appendix A, alongside descriptions of
supporting methods.
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Algorithm 1 Set Selection Based on Weighting

1: function SelectSetBasedOnWeights(sets, set targets, category sets, coun-
try category)

2: train weight ←
(
Size(sets[′train′])
set targets[′train′]

)
+
(

Size(category sets[′train′])
set targets[′train categories′]

)
3: val weight ←

(
Size(sets[′val′])
set targets[′val′]

)
+
(

Size(category sets[′val′])
set targets[′val categories′]

)
4: test weight ←

(
Size(sets[′test′])
set targets[′test′]

)
+
(

Size(category sets[′test′])
set targets[′test categories′]

)
5: missing categories ← ComputeMissingCategories(category sets)
6: if country category in missing categories[’train’] then
7: train weight ← AdjustWeightForMissingCategory(train weight)
8: end if
9: if country category in missing categories[’val’] then

10: val weight ← AdjustWeightForMissingCategory(val weight)
11: end if
12: if country category in missing categories[’test’] then
13: test weight ← AdjustWeightForMissingCategory(test weight)
14: end if
15: return SelectMinWeightSet(train weight, val weight, test weight)
16: end function

Data Split Value
Total Images 324053
Total Countries 139
Train Images 213313
Train Images Percent 0.658
Train Countries 95
Train Countries Percent 0.683
Val Images 54514
Val Images Percent 0.168
Val Countries 22
Val Countries Percent 0.158
Test Images 56226
Test Images Percent 0.174
Test Countries 22
Test Countries Percent 0.158

Table 1: Data Splits for FMoW Dataset

As can be see in Table 1, our algorithm was able to surprisingly allocate
countries and images effectively to achieve a rough 70/15/15 split of the data.
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4 Experiments

4.1 RemoteCLIP Zero-Shot Geography Probing

Our preliminary experiments aimed to evaluate the geographical knowledge en-
coded within the RemoteCLIP model, specifically its capacity to discern geo-
graphic information at varying granularities, including hemisphere, continent,
and country levels, integrated within the interplay between the text and image
encoders.

To this end, we employed a zero-shot information retrieval approach where
the model was tasked with matching images to their geographic metadata with-
out prior explicit training on these specific tasks. Queries were derived from
the metadata alone or in combination with the hand-crafted prompts utilized
during RemoteCLIP’s training phase (e.g., ”Europe”, ”Iran”, or more descrip-
tive forms like ”a satellite image of the North Eastern Hemisphere”, ”a satellite
image of Africa”, ”a satellite image of Mexico”). These queries were processed
by the text encoder, and each corresponding image was encoded through the
image encoder.

The underlying hypothesis was straightforward: if the text and image en-
coders have successfully internalized geographic information, then the nearest
neighbor in the embedding space for any given image should be the text descrip-
tion accurately reflecting its geographic context. To benchmark this geographic
retrieval performance, we also assessed the model’s capability in class retrieval
tasks across different object categories.

4.2 RemoteCLIP Geographic Semantic Injection

The objective of our subsequent experiments was to determine whether the
RemoteCLIP network could internalize geographic knowledge. This was ap-
proached by fine-tuning the network with semantically enriched metadata to
align the representations between the image and text encoders. We adopted
a hybrid training goal that merged contrastive estimation with classification.
Specifically, geographic metadata was utilized to generate descriptive prompts
for each satellite image—e.g., ”a satellite image of Australia in the South Eastern
hemisphere of Oceania.” These prompts, alongside their corresponding images,
were processed by their respective encoders, and the resulting embeddings were
concatenated. This combined feature vector was then input into a two-layer
neural network to obtain logits, which were used to categorize the images using
a softmax classifier. The total loss comprised the sum of the embedding distance
and the classification error. For this experiment, we fine-tuned the final layers
of both encoders while keeping the preceding layers fixed.

4.2.1 Normalization via Information Dropout

To ensure the RemoteCLIP model could effectively discern geographic details
at various scales, we introduced a normalization technique akin to information
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dropout. For any piece of geographic data, we programmed a probability p that
it would be omitted from the textual prompt. Thus, prompts would alternate
between being fully specified, such as ”A satellite image of Australia in the
South Eastern hemisphere of Oceania,” and partially redacted, like ”A satellite
image of in the South Eastern hemisphere of .” This strategy was designed
to compel the model to consider all levels of geographic detail and avoid over-
reliance on specific features.

4.3 RemoteCLIP Few-Shot Fine-tuning for Geography-
Aware Remote Sensing Scene Classification

Building on our semantic injection experiments, we aimed to adapt RemoteCLIP
to a few-shot learning scenario, aligning with the central theme of this study. To
achieve this, we employed the Model-Agnostic Meta-Learning (MAML) frame-
work, transforming the FMoW dataset into a few-shot compatible format. Our
fine-tuning process involved several nuanced scenarios.

Integration with the PyTorch MAML framework, as outlined in [11], neces-
sitated the creation of two classes: CLIPModel to work with RemoteCLIP and
LinearClassifier for the linear classifier applied to embeddings from Remote-
CLIP’s image and text encoders. We limited fine-tuning to the last visual layer
of ResNet-50 and the residual block of the transformer text encoder. Due to
computational constraints, we subsampled 500 out of approximately 2500 tasks
for training and 250 out of roughly 750 tasks for validation in each epoch. Our
experimental setup was consistently 5-way, 5-shot, evaluated on 5 query images
per class. The meta learning rate was set at 0.001, while the inner loop’s update
learning rate was 0.01. In scenarios with distinct learning rates for CLIPModel
and LinearClassifier, the former’s learning rate was 100 times smaller. Each
batch of tasks in the inner loop underwent 10 update steps.

The conducted experiments, designed to probe various aspects of few-shot
fine-tuning, included:

• RemoteCLIP fine-tuned with Geoprompting + Dropout (p = 0.2), shared
learning rate

• RemoteCLIP fine-tuned with Geoprompting + No Dropout (p = 0.0),
shared learning rate

• RemoteCLIP fine-tuned without Geoprompting (”a satellite image”), shared
learning rate

• RemoteCLIP fine-tuned with Geoprompting + Dropout (p = 0.2), sepa-
rate learning rates

• RemoteCLIP fine-tuned with Geoprompting + No Dropout (p = 0.0),
separate learning rates

• RemoteCLIP fine-tuned without Geoprompting (”a satellite image”), sep-
arate learning rates
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• RemoteCLIP fine-tuned without prompting (image-only), separate learn-
ing rates

These experiments were meticulously designed to evaluate the impact of our
information dropout normalization on few-shot performance, the differential
effect of tuning learning rates between CLIPModel and LinearClassifier, and
the overall influence of textual prompting in the fine-tuning process.

5 Results & Discussion

5.1 RemoteCLIP Zero-Shot Geography Probing

Figure 1: RemoteCLIP Geography Knowledge Analysis

Figure 1 presents the performance of the RemoteCLIP model across various
geographical probing tasks. Notably, the model does not exhibit a clear trend
of geographic awareness. It underperforms relative to the baseline in all tasks
except categorical classification. The latter serves as a control to verify Remote-
CLIP’s compatibility with satellite imagery; indeed, the model demonstrates an
ability to exceed baseline performance in scene classification, despite not being
trained on the FMoW dataset.

This outcome suggests that while RemoteCLIP can generalize to satellite
data to some extent, its geographical knowledge, particularly at granular levels,
is limited. Additionally, the results highlight a significant skew in the data,
which underscores the importance of a nuanced approach when assessing the
model’s performance. The insights gleaned here have shaped the subsequent
experimental design, ensuring a more refined evaluation of the model’s capabil-
ities in geographically-informed tasks.
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5.2 RemoteCLIP Geographic Semantic Injection

Figure 2: RemoteCLIP with Semantic Injection Geography Knowledge Analysis

Figure 2 illustrates the impact of semantic injection on RemoteCLIP’s perfor-
mance in zero-shot geographical tasks. The model’s marked improvement in this
setting is particularly noteworthy given that, during testing, only images were
provided—no accompanying geographic data. This suggests that the model has
effectively learned to recognize geographic features or features correlated with
geographic semantics.

The data indicate that for the majority of tasks, the model—both with and
without dropout—surpasses the baseline performance, with some tasks showing
substantial gains. This finding confirms our hypothesis that the model can be
trained to develop a sense of geographic awareness within our set constraints. A
crucial observation is the consistent outperformance of the dropout-regularized
model over its counterpart, implying the effectiveness of our dropout strategy in
facilitating the model’s ability to discern geographic information. Additionally,
the enhanced performance on classification tasks post-training attests to the
benefits of the additional semantic context provided during training.

5.3 RemoteCLIP Few-Shot Finetuning for Geography-Aware
Remote Sensing Scene Classification

In the unified learning rate regime for both the CLIPModel and LinearClassifier,
we encountered training instability leading to a collapse in accuracies, rendering
the train and test results non-reportable.

Conversely, the results from other training scenarios are revealing and promis-
ing.
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(a) Geoprompting + No Dropout (b) Geoprompting + Dropout

(c) No Geoprompting (d) No Prompting

Figure 3: Training Curves for all functioning models over 10 Epochs

Model Accuracy
Geoprompting, No Dropout 0.2459
Geoprompting, Dropout 0.2817
No Geoprompting 0.2462
No Prompting 0.1173

Table 2: Accuracy of Few-Shot Finetuned Models

As demonstrated in Figure 3, the remaining models exhibit a positive tra-
jectory in adapting to few-shot settings, with Table 1 providing a quantified
overview of their performance. Notably, even within the abbreviated span of 10
epochs and with a subsampled dataset, the models attain substantial accuracy.
This is particularly promising, considering that models in traditional studies
are typically trained for longer periods and with full datasets. The absence of a
plateau in the training and validation curves suggests that further improvements
might be achievable with more extensive training. This is highly encouraging
for further studies that aim to push adaptation further

Table 1 reveals that the models fine-tuned with geoprompting—both with
and without dropout—achieve accuracies significantly above the ’No Prompt-
ing’ baseline, confirming the beneficial impact of prompts on few-shot learning
performance. The ’Geoprompting, Dropout’ model outperforms its counter-
parts, signifying the effectiveness of the dropout strategy in enhancing few-shot
learning. Most notably, all models fine-tuned with prompts significantly sur-
pass the ’No Prompting’ model that relies solely on visual input. These results
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corroborate the premise that incorporating metadata can substantially bolster
few-shot learning capabilities in multi-modal remote sensing classifiers, meriting
further in-depth investigation.

5.4 Limitations and Future Work

This investigation has laid the groundwork for significant strides in multi-modal
few-shot learning, yet it recognizes the boundaries set by resource constraints.
The compute-intensive nature of applying a meta-learning framework to a large-
scale model like RemoteCLIP—with its extensive parameter set and the con-
sequent second-order gradients required by MAML—imposed substantial de-
mands on cloud computing resources. These limitations inherently restricted
the scope of hyperparameter exploration and the feasibility of employing larger
image encoders, such as those in the ViT series.

Our experience revealed the necessity for distinct learning rates between
the LinearClassifier and CLIPModel, and we observed training instabilities
associated with the text encoder over extended periods. This suggests that a
static learning rate may not suffice for long-term training stability, indicating
a fertile area for future research to delve into adaptive learning rate strategies
and differential rates for image and text encoders.

Furthermore, the solitary nature of this project’s execution hints at the vast
potential that could be unlocked with collaborative efforts. The encouraging
initial results merit the attention of the broader research community, opening
avenues for collective exploration into the variables affecting model performance.
Future endeavors should aim to expand on the number of shots, query samples,
and epochs, alongside a more granular adjustment of learning rates. With col-
laborative synergy, there’s a promising horizon for advancing the capabilities of
multi-modal few-shot classifiers and enhancing their practical utility in remote
sensing applications.

6 Conclusion

This study represents a advancement in the domain of remote sensing, demon-
strating the untapped potential of multi-modal models within few-shot learning
frameworks. By integrating RemoteCLIP with the MAML approach and ap-
plying it to the fMoW dataset, we have illustrated that semantic metadata,
when combined with visual data, bolsters model performance. Our experiments
have shown that with deliberate training and fine-tuning strategies, multi-modal
models can acquire a heightened geographical awareness and exhibit improved
classification abilities, even when data is scarce.

Our results indicate that the thoughtful incorporation of available rich meta-
data in remote sensing datasets can markedly enhance the efficiency of few-
shot learning models. The successful fine-tuning of RemoteCLIP to perform
geography-aware classification not only confirms the merits of multi-modal learn-
ing approaches in the field of remote sensing but also paves the way for further
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scholarly inquiry. Subsequent research could investigate the limits of these tech-
niques, refine learning rate optimization, and extend these methods to other
complex datasets and scenarios within remote sensing. The encouraging out-
comes of this research contribute to the progression of remote sensing technol-
ogy, ultimately improving our capacity to analyze and comprehend the Earth’s
topographies and phenomena via sophisticated satellite and aerial imagery.
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A Task Allocation

Algorithm 2 Data Preparation for Few-Shot Learning

1: df ← LoadData(′sorted.csv′)
2: country to category ←MapCountriesToCategories(df)
3: image counts← CountImagesPerCountry(df)
4: set targets← ComputeSetTargets(image counts)
5: sorted countries← SortCountriesByImageCount(image counts)
6: sets← InitializeSets
7: category sets← InitializeCategorySets(df)
8: PreAllocateCountries(sorted countries, country to category, sets, cate-

gory sets)
9: AllocateRemainingCountries(sorted countries, country to category, sets,

set targets, category sets)
10: OutputSetsInfo(sets)
11: CheckAndPrintCategoryRepresentation(sets, category sets)
12: CheckAndPrintSetOverlaps(sets)
13: SaveSetsToCSV(sets, ’train set.csv’, ’val set.csv’, ’test set.csv’)

Algorithm 3 Pre-allocations of Countries (Tasks)

1: function PreAllocateCountries(sorted countries, country to category, sets,
category sets)

2: for each category in UniqueCategories(df) do
3: for each country in sorted countries do
4: if country to category[country] == category then
5: if category not in category sets[’train’] then
6: AllocateCountry(country, ’train’, sets, category sets)
7: else if category not in category sets[’val’] then
8: AllocateCountry(country, ’val’, sets, category sets)
9: else if category not in category sets[’test’] then

10: AllocateCountry(country, ’test’, sets, category sets)
11: end if
12: end if
13: end for
14: end for
15: end function
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Algorithm 4 Allocation of Remaining Countries (Tasks)

1: function AllocateRemainingCountries(sorted countries, coun-
try to category, sets, set targets, category sets)

2: for each country in sorted countries not in any set do
3: selected set← SelectSetBasedOnWeights(sets,
4: set targets, category sets, country to category[country])
5: AllocateCountry(country, selected set, sets, category sets)
6: end for
7: end function

B Supporting Function Definitions

• LOAD DATA(file path): Loads data from a CSV file into a DataFrame.

• MAP COUNTRIES TO CATEGORIES(df): Maps each country
to its first category in the DataFrame.

• COUNT IMAGES PER COUNTRY(df): Counts images per coun-
try, applying a cap and a minimum threshold.

• COMPUTE SET TARGETS(image counts): Calculates target num-
bers for training, validation, and test sets based on image counts.

• SORT COUNTRIES BY IMAGE COUNT(image counts): Sorts
countries by image count in ascending order for fair allocation.

• INITIALIZE SETS(): Initializes and returns empty sets for training,
validation, and test splits.

• INITIALIZE CATEGORY SETS(df): Initializes and returns sets for
keeping track of categories in each split.

• OUTPUT SETS INFO(sets): Prints information about the distribu-
tion of images and countries in each set.

• CHECK AND PRINT CATEGORY REPRESENTATION(sets,
category sets): Checks and prints whether all categories are represented
in each set.

• CHECK AND PRINT SET OVERLAPS(sets): Checks and prints
any overlaps between the training, validation, and test sets.

• SAVE SETS TO CSV(sets, train file, val file, test file): Saves the
specified sets to CSV files.
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C Training Curves for RemoteCLIP with Se-
mantic Injection

Figure 4: RemoteCLIP Semantic Injection without Dropout

Figure 5: RemoteCLIP Semantic Injection with Dropout
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D FMoW Dataset Visualized

Figure 6: FMoW Image Distribution
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