
Un-reinventing the Wheel: Large Scale Open Source Code Search
ETHAN HELLMAN and BENJAMIN SPECTOR
In this work, we investigate searching large-scale public code repositories
using large language models. Our system, CodeCrawlr (Crawlr.), aims to
increase developer productivity and accessibility by enabling simple trans-
lation between natural language and code snippets through a Google-like
search application. Rather than take the time to re-implement commonly
used code, CodeCrawlr will take a brief description of the desired func-
tionality and instantly return multiple viable candidate functions. While
there exist services to search code based off of keywords, to the best of our
knowledge, there does not currently exist a service for performing code
search based on functionality/semantics. CodeCrawlr, contains four main
components. First, a data downloading and parsing pipeline, which checks
the license of open-source GitHub repositories, downloads and organizes
them, and parses the code. Second, an embeddings generation and storage
pipeline. Third, a query back-end which produces relevant code given a pro-
grammer’s in-progress work or natural-language query. Fourth, a front-end
which allows users to submit queries and receive back code snippets (and
links to their sources). We find CodeCrawlr to be surprisingly effective and
useful given its small scale and believe it demonstrates the power of the
techniques which underpin it.

Additional Key Words and Phrases: neural networks, large language models,
code similarity, search, open-source

ACM Reference Format:
Ethan Hellman and Benjamin Spector. 2022. Un-reinventing the Wheel:
Large Scale Open Source Code Search. 1, 1 (December 2022), 7 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Within the field of machine programming, machine learning has
brought new perspective to automatic code generation by treating
it as an autoregressive natural language modeling problem. The
burgeoning field, despite its nascence, has brought with it many
opportunities and efficiencies. However, most work in this area has
focused on generating new code with these models as opposed to
leveraging their understanding to reuse existing work. We feel this
is a missed opportunity, because – on a local scale – almost all code
is generally similar to other code which has been written before.

We believe that this leads to a new potential paradigm of machine
programming: search and adaptation as invention. In other words,
we feel that because new ideas are almost always formed out of
the rearrangement and improvement of previous work, new code
should rarely need to be written from scratch. Rather, when we
wish to invent new code, we should first aim to find previously
written code which approximates what we want to do, and then

Authors’ address: Ethan Hellman, hellman1@stanford.edu; Benjamin Spector, bfs@
stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/12-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

adapt it to better fit our needs. While there may remain some kinds
of programs that are too different from any code ever written before,
we hypothesize that these programs should be very rare due to
the scale of the modern open-source ecosystem. Furthermore, we
posit that this factorization of invention – as search and adaptation
– leads to easier, more reliable, and less harmful invention than
current learned methods of program synthesis.
Regarding easier: the tools to download source code from pub-

lic repositories are well-developed. Additionally, modern search
engines can search through vast amounts of data in milliseconds.
Together, this enables one to rapidly find a good starting point.

Regarding reliability: when code is written from scratch without
formal verification, bugs can easily emerge. While existing open-
source code is by no-means bug-free, one can use the semi-trust
of repositories to decrease the probability of bugs by relying more
heavily on trustworthy repositories and flagging code from untrust-
worthy repositories for review. Furthermore, if bugs or security
vulnerabilities are later found in source code, it could potentially be
automatically traced to both upstream and derivative code, which
would allow these vulnerabilities to be more quickly resolved.

Regarding harm: modern learned program synthesis tools (to be
discussed in more detail in the following section) are trained on
vast amounts of publicly available code, and appear to sometimes
reproduce code almost verbatim which is not freely licensed for that
purpose. While legal questions of fair use are pending litigation, we
feel that the laundering of code through these models is unethical.
A search and adapt approach alleviates these concerns because one
can simply index only freely available code. That way, the system
cannot accidentally steal code.
In this work, we introduce one key component of our proposed

search-and-adapt framework: the search engine. (Humans can do
the adaptation for the time being.) The search engine takes in queries
of intention – what the user wants to accomplish – and produces
relevant code from a small subset of MIT-licensed GitHub which
we have indexed.

Our search engine has four main components: the data pipeline,
the embedding pipeline, the query engine, and the front-end.
One key limitation of our work which we wish to address up-

front is its scale. As students, we set our budget for the project to
$50, which includes both the expenses for indexing and searching
for queries with the OpenAI API (the dominant expense) as well
as compute to serve our queries. There are two main effects of this
limitation on our work. First, due to their expense, we were not able
to use the highest-quality embeddings which decreases the quality
of our search results. Second, we are not able to index very many
repositories, and thus our engine does not achieve the density of
indexing that it would otherwise. Consequently, we believe that this
project should be treated as a scaffolding and a proof-of-concept for
the search engine in our search-and-adapt framework for program
invention. With the injection of additional capital, we believe the
performance of our approach would and the utility of our service
increase dramatically.

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 • Hellman and Spector

2 BACKGROUND
We divide this section into two parts. First, we examine the available
datasets for code search and automatic code generation. Second, we
consider the evolution of natural language processing (NLP) based
methods.

2.1 Data
We organize this survey chronologically, with earliest work first.

We also note that we actually ended up using none of these
datasets for our project, for two reasons. First, we wanted to be
able to source the origin of code – we feel this is an important
part of our contribution. Second, we realized that if we wanted to
construct a representative example of what large-scale open-source
code search would look like, we should sample it from large-scale
open-source repositories. Nonetheless, we summarize the relevant
datasets here because they were important to our thought process
(and therefore must be cited) and would likely still be useful in
future work.
Source code is rarely written in isolation, it depends on the con-

text of the surrounding functions. One might imagine wanting to
generate class member functions given English documentation and
the programmatic context provided by the rest of the class. CON-
CODE (2018) is a dataset with over 100,000 examples of Java classes
from online code repositories. [Iyer et al. 2018]

The Neural Code Search Evaluation Dataset (2019) uses the most
popular Android repositories on GitHub (ranked by the number
of stars) to create a search corpus with 24,549 repositories. The
search corpus is indexed using all method bodies parsed from the
repositories, leading to a total of 4,716,814 methods in this corpus.
[Li et al. 2019]

CodeSearchNet (2020) is a large dataset of functions with associ-
ated documentation written in Go, java, JS, PHP, Python, and Ruby
for open source projects on GitHub. It includes 6 million methods
overall, 2 million of which have associated documentation (doc-
strings, JavaDoc, and more). [Husain et al. 2019]
Pseudo-code to Code (known as SPoC, though we do not under-

stand the acronym very well) is a 2019 program synthesis dataset
containing both code and pseudo-code for 18,356 programs. [Kulal
et al. 2019]

We also investigated the 2021 Code Search and Question Answer-
ing dataset (CoSQA), which consists of 20,064 pairs of queries and
code. These real-world user queries are collected from Bing query
logs and the code for queries are taken from CodeSearchNet. [Huang
et al. 2021]

Search4Code is a 2021 dataset which consists of 6596 Java queries
and 4974 C# queries. The main purpose of this dataset is actually
simply to determine whether queries are code queries or not, rather
than in finding the appropriate code for the query. Like CoSQA, the
dataset is also collected from real Bing query logs. [Rao et al. 2021]
CoDesc is a large datset of code and code descriptions which

aggregates existing datasets such as CodeSearchNet and CONCODE
(among others). It also uses Python-to-Java transpilation to increase
the size of the dataset. Altogether, it consts of approximately 4.2M
Java functions and their descriptions. [Hasan et al. 2021]

The CodeSyntax dataset (2022) consists of code annotated with
syntax derived from the abstract syntax trees of the code. Its pur-
pose is primarily to evaluate the quality of generated code’s syntax
structure. [Shen et al. 2022]

Cross-Lingual Code SnippeT (XLCoST) is a large-scale 2022 dataset
of parallel code written in seven different languages. It contains
just over 1M different snippets in these different languages and is
designed to aid in research into cross-lingual code intelligence. [Zhu
et al. 2022]

2.2 Methods
In the Natural Language Processing (NLP) space, word2vec’s dis-
tributed representation of words played a key role in enabling deeper
understanding of language semantics. [Mikolov et al. 2013] Similarly,
code2vec enabled learning distributed representations of code in
vectors or “code-embeddings,” for different downstream tasks. Using
a combination of Abstract Syntax Trees (AST) and a “novel” soft-
attention network architecture, this technique achieved up to 17%
relative improvement, 5x faster training, and greater generalizability
over the previous state of the art. [Alon et al. 2019]

Since [Alon et al. 2019], significant gains have been realized with
the advent of the Transformer [Vaswani et al. 2017] - a simple
network architecture solely based on attention mechanisms. Ad-
vances in transformers reduced the number of trainable parameters,
as well as increased model performance and parallelizability. Fast-
forwarding to 2020, Large-Language Models (LLM’s) like GPT-3
[Brown et al. 2020] can now be trained with up to 175 billion pa-
rameters - 10x more than any previous language model - to perform
a general array of NLP tasks. More recently, versions of the model,
such as GPT-J [Wang and Komatsuzaki 2021], GPT-Neo, [Black et al.
2022] and CodeBERT [Feng et al. 2020], amongst others have fueled
progress in program synthesis. Following GTP-3, OpenAI released
Codex, a GPT model with 12 billion parameters fine-tuned on 159
GB of code from Github to test LLM code-writing capabilities. [Chen
et al. 2021] The authors found that Codex is able to generate at least
one correct function output out of 100 samples for 77.5% of the
coding prompts it is fed from “HumanEval” and significantly out-
performs its competitors. While this does represent an impressive
advancement in machine programming, one of its major drawbacks
is its lack of accessibility. Codex is not open-source, and clarity on
what code was used to train the model is sparse. As such, [Xu et al.
2022] created PolyCoder, an open-source LLM trained on 249 GB of
code across 12 different languages.

Key here are effective embedding representations of both code and
text to enable better performance on down-stream tasks - including
search. [Neelakantan et al. 2022] demonstrated how a contrastive
learning objective using GPT and Codex produce text and code em-
beddings with state-of-the-art results over previous best supervised
and unsupervised models. The model consists of a transformer en-
coder network where the training objective is to assess the cosine
similarity between samples. More recently, [Gao et al. 2022] in-
troduced a similarly-inspired unsupervised contrastive learning
technique for sentence embeddings which leverages BERT and
RoBERTa. Their approach elegantly stresses the power of using stan-
dard dropout as noise. They build on this with a slightly-augmented

, Vol. 1, No. 1, Article . Publication date: December 2022.

Un-reinventing the Wheel: Large Scale Open Source Code Search • 3

Fig. 1. A diagram of the overall architecture of Crawlr.

supervised approach which outperforms [Neelakantan et al. 2022].
as the state-of-the-art text embedding technique.

3 SYSTEM DESIGN
The overall design of our system consists of four main components:
the data pipeline, embedding pipeline, query back-end, and front-
end user interface. While none of these components are particularly
original in nature, we feel that the engineering to synthesize them to-
gether into a coherent product is what makes the project interesting.
A diagram of the project is presented in figure 1.

First, we constructed a database of code, metadata, and embed-
dings taken from permissively (MIT) licensed GitHub repositories.
While we originally tried automating the selection of trustwor-
thy repositories, we found that this approach dramatically over-
represented certain kinds of repositories which were unlikely to
contain much interesting code. (For example, there are several high-
starred open-source repositories which consist of just a README
file of other useful resources, which is not particularly useful for
our purposes.) We then calculated how many repositories we would
actually be able to index on our limited budget and realized it would
be both easier and probably higher-quality to select our repositories
by hand. A list of the repositories we indexed can be found in Ap-
pendix A. We then augmented the repositories with some additional
metadata so that code can be traced back directly to the source. The
code we indexed ended up consisting of 13,286,894 bytes of code
distributed over 22,335 functions.

Second, we built a pipeline to parse, embed, and store code. First,
a Python script crawls through directories of files, parses functions
from .py files, assembles the code with its relevant metadata, and
stores it in json. Then, a second script batches these functions, de-
termines which ones will (due to length) be unable to be embedded,
calls the relevant OpenAI endpoint (which contains a modified ver-
sion of Codex [Chen et al. 2021]) to embed them, and stores them in
batched json files for easy loading. In the end, it cost approximately
$33 to index at around 400 kB/$.

Third, we built a query engine using the library FAISS which
embeds an input query and returns the nearest-neighbor results
using an inner product similarity with its database. This is deployed
on an e2-standard-2 server on Google Cloud. One benefit of the
inner product method is that it allows us to tune the scores for dif-
ferent levels of trust and usefulness. When normalized, it produces
the naive cosine similarity, but we can also penalize code which
comes from less reliable sources or which contains features which
we believe negatively signal its usefulness by scaling down their
corresponding embedding vectors, and increase code containing
useful features by upscaling their vectors proportionately, too.

Finally, we built a lightweight user interface to allow users on the
web to query the system and receive code back. The site is modeled
(somewhat minimalistically) on the original Google website and is
served in flask. The reason for expending this effort is that, if all
goes well, we hope to be able to conduct a live demonstration with
the class during our final presentation.
As we stated in the introduction, we wrote our infrastructure

to be scalable: simply input more money and it can be run on an
increasing fraction of all of the permissively licensed open-source
code on GitHub. (Some additional effort would be required to build
parsers for other languages but this is not too difficult.)

Regarding the ethics of this project, we had a conversation with
OpenAI before embarking on putting up our front-end to ensure
no harm would come from the project. We concluded that because
we only query embedding APIs rather than completion APIs, we
could not foresee any risks from exposing the model to the internet.
Additionally, we ensured that we only indexed permissively-licensed
code, so that even if someone finally stumbled on our project they
would not accidentally end up using code that is unlicensed for those
purposes. Finally, we emphasized that the project is a class project
only expected to be visible to us and, potentially, the class. OpenAI
agreed that the risks were minimal and advised us to proceed. Of
course, if the project were to be expanded, additional review would
be necessary.

3.1 CodeCrawlr Application Design
A strong motivating factor for this project was the ability to utilize
the underlying nearest-neighbor search to build a usable tool in the
form of aweb-application.While Google ushered in the development
of web search, Crawlr. similarly aims to service initial forms of
online code search. As such, our application pays homage to the
early implementations of google.

3.1.1 CodeCrawlr Back-End Design. The back-end for the Crawlr.
web application is hosted on a remote Flask server. We decided
to use Flask for our back-end because all of our functionality was
initially implemented in Python. Most importantly, our embedding
generation and our nearest-neighbor search - the core of our service -
were written in Python. Flask is a light-weight micro web framework
written in Python. It does not require additional tools or libraries.
Additionally, Flask does not have a database abstraction layer or
perform form validation. This allowed us to quickly develop and
deploy a server for Crawlr.
Crawlr. requires the embeddings and the code snippet itself in

order to perform its search functionality. Given the amount of data

, Vol. 1, No. 1, Article . Publication date: December 2022.

4 • Hellman and Spector

we have to "code crawl" (199MB), we did not take the time to op-
timize our search by creating a custom database. Rather, our data
is stored in JSON format locally on the server. These files contain
the embeddings, actual snippets, as well as other metadata such as
function names and filepaths. This allow for simple integration with
our existing embedding generation and nearest-neighbor search
pipeline. As such, our Flask server simply communicates with our
existing functions to perform queries.

3.1.2 CodeCrawlr Front-End Design. The front-end of our web ap-
plication is built using HTML, CSS, JavaScript, and React. Axios
is used as our promise-based HTTP client for the browser. Upon
accessing codecrawlr.com, the user is given a clear prompt in the
middle of the screen - a query input field (figure 2). There are multi-
ple ways Crawlr. can be used for search. The two search methods
implemented in our web application are text-to-code and code-to-
code. Crawlr.’s default is text to code search; however, this can be
changed with the click a button. Additionally, the user is able to
specify the desired number of results they wish to see. Given our
choice of a nearest-neighbor search, this is trivial to implement.
Illustrated in figure 3 is a page of top-n (user-specified) closest

results from performing nearest-neighbor search. Results are ranked
by effective "distance" to the search query. The code is displayed in
a React component capable of rendering properly-formatted code
in a variety of languages. This allows the user a quick glance at the
code. Clicking on the function name redirects the user to a page
dedicated to that function for a more comprehensive view. As seen
in figure 4, this page also contains a button labeled "Code Crawl."

This button automatically performs a code-to-code nearest-neighbor
search using the code snippet of the current page. figure 6 shows the
results of clicking the "Code Crawl" button. As with text-to-code,
the crawl results display the same information, are ranked by ef-
fective "distance" to the code snippet query, and can be clicked to
move to the next code snippet page. While it remains to be thor-
oughly user-tested, the code crawl functionality is meant to assist
in both search and general code exploration. While an immediate
candidate code snippet may not adequately fulfill the intention of
the user’s query, in our exploration (ref. Section 4.) we find that it
may be reasonably close to the desired result. This can result from
differences in the search terms different individuals use as well as
the under-performance of Crawlr. search. Hence, the crawl func-
tionality enables the user to search the adjacent space of results for
potentially more appropriate code snippets.

4 EXPERIMENTAL RESULTS
The main limitation of our approach of using data directly from
GitHub, which we realized only after we had implemented the
project, is that even though we didn’t to train with any of the
queries from any of the datasets listed in the background section,
it would have made our lives easier in evaluation. As a result, we
have constructed several of our own benchmarks which can be
bootstrapped from our data. While they are imperfect, we feel they
at least give a basic understanding of how our system performs. We
begin with the quantitative analyses we performed and then turn
later to our qualitative assessments of the system.

Fig. 2. Crawlr. Homepage

Fig. 3. Crawlr. SearchQuery Results Page

Fig. 4. Crawlr. Code Snippet Page

, Vol. 1, No. 1, Article . Publication date: December 2022.

Un-reinventing the Wheel: Large Scale Open Source Code Search • 5

Fig. 5. Crawlr. Crawl Page

4.1 Quantitative evaluations
The first benchmark we used was based on Project Euler. Project
Euler is a set of online programming challenges, and within one of
the repositories of our dataset happen to be solutions to many of
these problems. So, we evaluated Crawlr by querying it with the
title of the problem (e.g. “Special Pythagorean triplet”) and seeing
with what probability it produced code from the actual solutions to
these problems.
We evaluated this by hand on the first 50 problems of Project

Euler and found it got 14 of them right. While this performance may
not sound impressive, we believe that more careful examination
reveals that it is actually surprisingly good.

First, many of the queries from this dataset are highly ambiguous.
Take, as examples, problem 13 (“Large Sum”), problem 22 (“Names
scores”), or problem 48 (“Self powers”). All of these could actually
mean many things, and it is unlikely that even a human oracle, given
the prompt “Large Sum” would immediately return the solution to
the problem (which involves returning only the first 10 digits of a
large sum). We additionally found that for many of the problems
which it could not solve, prompting with a larger substring from
the problem description (“Work out the first ten digits of the sum”)
yielded the correct response. We actually think it is rather remark-
able that Crawlr can return the correct solution to problems using a
query like “Sum square difference” almost 30% of the time.
Additionally, regarding the ambiguity of these queries, another

10% of the time Crawlr would fail to return the complete solution
to the problem, but would produce code that is clearly relevant
and useful for the solution. For example, with problem 25 (“1000-
digit Fibonacci number”) although it failed to produce the complete
solution, it did return a fast algorithm for Fibonacci numbers using
matrix exponentiation, which could be easily used to construct the
full solution. We reiterate that Crawlr currently uses neither search
data nor fine-tuning in its responses.

A second test we did was to see howwell Crawlr is able to identify
full functions given random substrings from their body. We tried
this with three different lengths of substrings: 50 characters, 100

Substring length (chars) Accuracy
50 49.7%
100 71.1%
200 84.2%

Table 1. Probability of Crawlr successfully determining the origin function
given a random substring of varying lengths.

characters, and 200 characters. (In all situations we ensured the
length of true function was significantly longer to prevent cases
from being too easy.) The results of this investigation are presented
in table 1.
We suspect that this measurement is in some ways more of a

measurement of the data than it is of Crawlr. Consider, for example,
the following 50 character query:
“cls, v, field, **kwargs):\n calls.append”
We suspect this query would be hard to resolve under most condi-
tions. On the flip side, a query which happened to include function
arguments which were distinctive might be more likely to return
the right response.
The main benefit of this metric of Crawlr, however, is that it

measures to what degree the embedding models used have actually
compressed the code in addition to understanding it at a high level.
What we mean by this is that if Crawlr were unable to complete this
task, it would indicate that the embeddings don’t capture well the
contents of the code itself in a consistent way, even if they captured
the meaning of the code. But because Crawlr is able to complete
this task reasonably well even with often small substrings of code, it
indicates that the code’s contents is being compressed. We then used
this knowledge to guide the construction of the traversal search we
built into the front-end.

4.2 Qualitative evaluations
We began by investigating the code that we indexed and the embed-
dings we produced. First, we were interested in the distribution of
lengths of functions. We hypothesized that certain functions within
the dataset would be too short, and others too long, to likely be
useful. (One result of this is that in our final model which is deployed
we penalize the scores of function lengths which are either shorter
than 100 characters or longer than 3000.) We show a histogram of
this distribution in figure 6
A second visualization of the code we constructed is a UMAP

projection of the embeddings. UMAP is a method for reducing the
dimensionality of datasets which assumes a uniform distribution of
data on a locally connected manifold with a Riemannian metric and
then constructs a representation which minimizes the distortion of
the topological structure. [McInnes et al. 2018] In figure 7 we show
these embeddings, reduced from 2,048 dimensions to 2 dimensions,
and colored according to their source repositories. First, we note
that we suspect these graphs are highly interesting in their own
right. For example, where these repositories overlap, it suggests that
they have considerable amounts of code in common which could
potentially be refactored to improve both code conciseness and also
code quality. On the flip side, when the clusters are well-separated,
it suggests that the code contained is very different. For example,

, Vol. 1, No. 1, Article . Publication date: December 2022.

6 • Hellman and Spector

Fig. 6. A histogram of the lengths of the 22,335 functions we indexed. Each
tick is 10 characters, and the total function length includes its declaration.

the orange clusters which are found on the top left and bottom
right of the image correspond to the repository explosion/spaCy, a
natural language processing library, which is indeed meaningfully
distinct from all the other repositories we indexed. By contrast,
python/cpython is quite spread out over the embedding space, which
makes sense since one expects (and hopes) for its functionality to
cover a wide range of programming and use-cases.
We wish to emphasize that the purpose of this visualization is –

unlike other uses of UMAP in categorical classification settings –
not to demonstrate that the representations partition the input. In
fact, this property would be largely undesirable, because real code-
bases do have real overlap, and in fact this property is necessary
for our project to have any value whatsoever. One expects – and
observes – that some repositories should have more overlap with
others, and some should be more distinct. Nonetheless, we feel
that this illustration provides intuition about the structure of and
relationships between these popular codebases.

We now turn to a qualitative assessment of the engine itself. This
too has two components. The first is the performance of the initial
engine; the second is the usability of the crawling component. In
both cases these results are derived from considerable time spent
querying it and testing its limits.
In general, we have found that CodeCrawlr performs very well

when it is given queries that are fairly close matches with the doc-
umentation of a function – that is, it does not need to understand
the body of the function too well to produce a reasonable result.
For example, if one asks it for a “Breadth-First Search” one gets
back pretty good answers: the top four responses include two dif-
ferent breadth-first search implementations, one depth-first search
implementation, and one A* implementation. On the flip side, when
the query involves a completely different phrasing or interpreta-
tion of the contents of a function, Code Crawlr does not perform
particularly well.

Fig. 7. An index of the repositories in this visualization is as follows: 0: thum-
bor/thumbor, 1: python/cpython, 2: ManimCommunity/manim, 3: explo-
sion/spaCy, 4: kitao/pyxel, 5: pallets/flask, 6: ansible/ansible, 7: zappa/Zappa,
8: psf/requests, 9: tiangolo/fastapi, 10: TheAlgorithms/Python, 11: local-
stack/localstack, 12: vipstone/faceai, 13: pydantic/pydantic, 14: faif/python-
patterns, 15: ageitgey/face_recognition, 16: Textualize/rich, 17: soimort/you-
get, 18: scrapy/scrapy. A higher resolution version is available here.

Onemajor limitation of thework is that we did not generally index
class methods. The reason for this is that class methods rarely can
stand on their own in isolation, so they’re not very useful to return
to users. However, we have since come to realize that often times
pure functions are written within classes for organizational reasons,
and that our current approach of ignoring classes also misses out
on lots of the most important code from these repositories.

5 FUTURE WORK
There is quite a lot of low-hanging fruit to improve CodeCrawlr. The
simplest would be to increase its scale. As of now, we constructed
it on a subset of 19 repositories containing 13.2MB of code at a
cost of $50. By contrast, GitHub hosts 78M repositories containing
10s of terabytes of codes, at least a reasonable fraction of which
is open-sourced. Thus, one can conservatively estimate that one
could simply index 100,000 times more code in order to produce
significantly more specific and high-quality results.
A second source of future optimization is using query data to

improve the search engine. Very few search engines work well
without being optimized for their workload; indeed, commercial
search engines like Google have the benefit of trillions of queries by
which they can improve their recommendations. In the future, one
might imagine up or down-weighting certain code snippets based
on how often they are accepted when suggested, and also iteratively
refining the embeddings themselves according to user queries.

There is also considerable fine-tuning one could imagine doing in
other ways. Right now we use very little semi-trust data to improve
our results; the main one (discussed earlier) is to prefer returning
functions which are neither too short nor too long. But, there are
lots of other features one could imagine using. For example, if we
indexed more low-quality data, it would be natural to adjust the

, Vol. 1, No. 1, Article . Publication date: December 2022.

https://drive.google.com/file/d/1CRGIbf0-yem918-mTKrqJiCfoaLrLCbt/view?usp=sharing

Un-reinventing the Wheel: Large Scale Open Source Code Search • 7

scores of this low-quality data to really ensure it is a good match
before we would consider returning the code snippet.
One could also improve CodeCrawlr by allowing queries to in-

clude richer metadata. For example, one could let the user choose
the levels of trust of the source they are willing to accept, or the
approximate length of the code they are looking for.
Regarding indexing class methods, one useful change which we

might make in the future is to automatically detect whether class
methods are pure or not (one could actually check this fairly easily
in Python by seeing if the function ever references “self”) and at least
include those functions. In the long-term, we also hope it would be
possible to handle object-oriented paradgims better within a code
search framework, as we feel this is a significant difficulty.

6 CONCLUSIONS
In this work, we investigated using large language models based on
Codex [Chen et al. 2021] to search permissively licensed public code
repositories. Our system, CodeCrawlr consists of four parts: a data
pipeline, an embeddings pipeline, a query engine, and a front-end.
We conducted both quantitative and qualitative analyses of Code-
Crawlr and found it to be moderately effective at code search despite
its small scale, though it has serious limitations imposed both by
budgetary constraints and the naivety of our approach. Finally, we
proposed modifications which we feel could significantly improve
its performance in the future based on the methods which power
existing search engines. We hope our work illustrates and inspires
a broader class of “search-and-adapt” approaches for inventing out
of intent.

7 ACKNOWLEDGMENTS
We’d like to thank the course staff for a great semester!

REFERENCES
Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning dis-

tributed representations of code. Proceedings of the ACM on Programming Languages
3, POPL (2019), 1–29.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. 2022. Gpt-neox-20b:
An open-source autoregressive language model. arXiv preprint arXiv:2204.06745
(2022).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
2020. Language models are few-shot learners. Advances in neural information
processing systems 33 (2020), 1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiv:2002.08155 (2020).

Lei Gao, Lijuan Zhang, Lei Zhang, and Jie Huang. 2022. RSVN: A RoBERTa Sentence
Vector Normalization Scheme for Short Texts to Extract Semantic Information.
Applied Sciences 12, 21 (2022), 11278.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md
Haque, Mahim Anjum, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat
Shahriyar. 2021. CoDesc: A Large Code-Description Parallel Dataset. arXiv preprint
arXiv:2105.14220 (2021).

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong, Ke Xu, Daxin Jiang, Ming Zhou,
and Nan Duan. 2021. Cosqa: 20,000+ web queries for code search and question
answering. arXiv preprint arXiv:2105.13239 (2021).

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2018. Mapping
language to code in programmatic context. arXiv preprint arXiv:1808.09588 (2018).

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken,
and Percy S Liang. 2019. Spoc: Search-based pseudocode to code. Advances in Neural
Information Processing Systems 32 (2019).

Hongyu Li, Seohyun Kim, and Satish Chandra. 2019. Neural code search evaluation
dataset. arXiv preprint arXiv:1908.09804 (2019).

Leland McInnes, John Healy, and James Melville. 2018. Umap: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426
(2018).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek,
Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al. 2022. Text and
code embeddings by contrastive pre-training. arXiv preprint arXiv:2201.10005 (2022).

Nikitha Rao, Chetan Bansal, and Joe Guan. 2021. Search4Code: Code search intent clas-
sification using weak supervision. In 2021 IEEE/ACM 18th International Conference
on Mining Software Repositories (MSR). IEEE, 575–579.

Da Shen, Xinyun Chen, Chenguang Wang, Koushik Sen, and Dawn Song. 2022.
Benchmarking Language Models for Code Syntax Understanding. arXiv preprint
arXiv:2210.14473 (2022).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances
in neural information processing systems 30 (2017).

BenWang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022. A
systematic evaluation of large language models of code. In Proceedings of the 6th
ACM SIGPLAN International Symposium on Machine Programming. 1–10.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and
Chandan K Reddy. 2022. XLCoST: A Benchmark Dataset for Cross-lingual Code
Intelligence. arXiv preprint arXiv:2206.08474 (2022).

A REPOSITORIES INDEXED
https://github.com/thumbor/thumbor,
https://github.com/python/cpython,
https://github.com/ManimCommunity/manim,
https://github.com/explosion/spaCy,
https://github.com/kitao/pyxel,
https://github.com/pallets/flask,
https://github.com/ansible/ansible,
https://github.com/zappa/Zappa,
https://github.com/psf/requests,
https://github.com/tiangolo/fastapi,
https://github.com/TheAlgorithms/Python,
https://github.com/localstack/localstack,
https://github.com/vipstone/faceai,
https://github.com/pydantic/pydantic,
https://github.com/faif/python-patterns,
https://github.com/ageitgey/face_recognition,
https://github.com/Textualize/rich,
https://github.com/soimort/you-get,
https://github.com/scrapy/scrapy

, Vol. 1, No. 1, Article . Publication date: December 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Data
	2.2 Methods

	3 System Design
	3.1 CodeCrawlr Application Design

	4 Experimental Results
	4.1 Quantitative evaluations
	4.2 Qualitative evaluations

	5 Future Work
	6 Conclusions
	7 Acknowledgments
	References
	A Repositories Indexed

