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Abstract

Increased emissions from fossil fuels has expedited cli-
mate change creating a pressing need to shift to renewable
sources of energy. Solar photovoltaics (PV) is a promising
form of renewable energy, but government and corporate
stakeholders lack a comprehensive mapping of the current
distribution of PV’s. Knowledge of where PV cells are and
how many there are is critical information for the purpose
of energy generation capacity estimation. We sought to cre-
ate a model that could segment and detect PV cells from
aerial satellite imagery. For detection, we trained a ResNet-
34 to achieve an AUC-ROC score of .99. For segmenta-
tion we trained a U-Net to achieve an IoU of score of .789.
Both models were trained on a data set of 20,900 224x224
satellite images from the cities of Fresno, Stockton, Oxnard,
and Modesto. Both models outpreformed prior benchmarks
set by DeepSolar. Through various hyper-parameter tuning
and experimentation, we seek to optimize a model for the
task of PV segmentation and classification.

1. Introduction
Unprecedented levels of carbon dioxide in the Earth’s

atmosphere have resulted in detrimental climate and envi-
ronmental impacts that threaten planetary extinction. As a
result, governments around the world have been trying to
shift from fossil fuels to renewable energy sources. Solar
energy has emerged as one of the premier candidates for re-
newable energy because of its endless availability and lim-
ited environmental.

Solar photovoltaic (PV) is an exponentially growing
form of renewable energy and many countries have been
making efforts to install solar cells on rooftops of homes,
business, and other suitable locations due to the promising
environmental benefits of the energy source compared to
fossil fuels. Generally, distributed solar PV’s are installed
on rooftops, agricultural lands, and water surfaces. How-
ever, the scaling of PV plants is limited by land availability
and integrity. To be able to assess energy needs and deter-
mine correct allocation of grid resources, governments need

a reliable mapping of distributed PV cells. Because PV’s
are often privately owned and historical data is unreliable,
traditional data collection methods have failed to provide an
accurate map of the PV landscape.

Furthermore, not all installed PV panels are accurately
registered and not all records are up to date. This can re-
sult in issues for the renewable energy market as operators
need to be able to predict total rooftop solar PV generation
over numerous areas, among other concerns. However, the
usage of satellite imagery with deep learning can be used
as fruitful tool to be able to identify solar PV’s to overcome
this problem.

We have experimented with multiple machine learning
architectures to optimize detection accuracy. Our training
approach is split up into two phases. First, we train a classi-
fier to identify whether or not a solar panel is present in the
given satellite image. Then, we use the classifier output as
a downsampling base for U-net convolutional upsampling
which segments the images to locate the positions of the
solar PV’s.

One can think about this training process as a two step
process. The first process, through the help of ResNet34
model that pre-trains on Imagenet data, is used to train a
classifier, which will detect whether there is a solar panel
present in the photo. The classifier employs a binary cross
entropy loss function to evaluate its performance. Further-
more, for the classifier’s evaluation metrics, we take two
metrics: the AUC - ROC curve and the F1 score. With this
classifier established, we are then able to transition into the
second half of the training.

For the second phase of the training, the segmentation
process is necessary for isolating the polygon shapes where
the solar panel is in the photo. To do this, we use a U-net
architecture, which is a common model architecture for se-
mantic segmentation. Semantic segmentation is the process
of associating each pixel in an image with a class label. In
this case, the class of interest would be the area that con-
tains the solar PV’s and the output of the model would be
the area in which the solar PV’s are present in the image.
The segmentor is evaluated based off the intersection over
union (IoU).



To train the U-net and to test our model, we used a
dataset of distributed aerial photography and satellite im-
agery of solar panels across high-resolution images in Cal-
ifornia. The dataset is publicly available and contains the
geo-spatial coordinates and border vertices of solar cells
from the cities of Fresno, Stockton, Oxnard, and Modesto in
California. Finally, the data had to undergo several prepro-
cessing operations, such as a mask generator and cropping,
before using them for training and testing.

2. Related Work
2.1. Image Segmentation

The objective for semantic segmentation is to assign
each pixel of a given image to one of multiple classes.
Specifically, it identifies which objects are shown in an im-
age and where exactly are they located in the image. There
have been early approaches to semantic segmentation such
as the work of He et al. (2004) [1] and Shotton et al.
(2009) [2]. Deep neural networks and convolutional neural
networks have played a dominant role in the field of image
classification and have resulted in deeper and more complex
architectures (He et al, 2016) [3].

The cornerstone of semantic segmentation begins with
the Fully Convolution Network (FCN) (Long et. al 2015)
[4] that can be applied to images of any dimension. The ar-
chitecture uses a convolutional network architecture for the
first layers (convolution and max pooling layers are utilized
until the image is downsized sufficiently enough). Then the
outputs are scaled up to its original size using upsampling
and deconvolutional layers. The down stream extracts con-
textual information and the up stream reconstructs more de-
tailed spatial information. A problem that FCN addresses
with using deep neural networks for semantic segmentation
is that detailed, deep structures do not get lost. This is be-
cause FCN is not a relatively deep architecture and intro-
duces skip connections. Skip connections skip some of the
layers of a neural network and feed the output of one of the
layers as the input to the next layers.

Skip connections were improved with the introduction
of U-net architectures which built on the FCN architecture
(Ronneberger et al. 2015) [5]. The U-net consists of sym-
metric contractive and expansive paths with the correspond-
ing layers of both paths connected by skip connections. The
U-net is a relatively simple architecture that has become
popular in the field of semantic segmentation and has in-
spired later architectures with its encoder-decoder structure.

2.2. Solar Panel Segmentation

The area of solar panel segmentation is a novel re-
search field; that being said, there have already been sev-
eral promising approaches. The approaches that have gone
down the path of image segmentation typically assign a

probability to each pixel (with a classifier) or through
CNNs, but with additional layers that output a probability
map.

One of the earliest, effective approaches to solar panel
segmentation came from Malof et al. (2016) [6] at Duke
University and utilized a random forest classifier to assign
probabilities to each pixel enabling segmentation. This was
improved by the usage of CNNs that consisted of convolu-
tional layers and max-pooling layers Malof et al. (2016) [7].

A big development in the field was made with the in-
troduction of DeepSolar by Yu et al. (2018) [8] at Stan-
ford University. Their project invovles two phases: a CNN
based classification followed by semi-supervised segmenta-
tion. The group was able to identify solar PV’s across the
contiguous United States at a precision of 93.1% and recall
of 88.5%. The results of this project were groundbreaking
for the field and is still considered state-of-the-art today as
it influenced updates to other models, such as the CNN uti-
lized by Yuan et al. (2016) [9] at Oak Ridge National Lab.

In 2020, the field was heavily influenced by the intro-
duction of the U-net architecture. The paper by Li Zhuang
et al. (2020) [10] presents an algorithm for automatic seg-
mentation of residential solar panels with a cross learning
driven U-net. Since the U-net architecture overcomes disad-
vantages of FCNs and has demonstrated its performance on
analyzing satellite images, it is promising that this project
adapts the U-Net to small-scale residential solar panels seg-
mentation. This advancement of the U-net was a great de-
velopment; however, a potential disadvantage is that due to
its specific initialization method, considered in the Cross-
Net, its application would be constrained to networks that
consist of a encoder and decoder structure.

3. Methods

3.1. Overview

We aim to solve two problems: (a) PV classification -
a binary classification task predicting if an image contains
any solar panels and (b) PV segmentation - generating pixel
masks for the areas in an image that contain solar panels.
For both our architectures, we used fastai’s GitHub repo as
a base, tweaking their model to fit our desired output and
experimenting with various hyperparameters . [11]

3.2. PV Classification

3.2.1 Model

For PV classification we used a 34-layer residual network
(ResNet-34) that can be seen in figure 1. [12] ResNet-34
has achieved state of the art performance - 3.57% error on
the ImageNet test set. Given that solar panel detection is a
significantly more trivial problem, we figured it was a suit-
able architecture. [13]



ResNet-34 capitalizes on the idea of “the deeper the bet-
ter” in the case of CNNs. ResNet-34 is able to go deeper
while avoiding vanishing gradients seen by other models by
adding skip connections from later layers to initial filters.
This connection sums the input (x) and output of each 3x3
convolution block (f(x)):

f(x) + x = h(x) (1)

When we take the gradient we will never get zero - even if:

∂f(x)

∂x
= 0 (2)

from the convolution:

∂x

∂x
= 1 (3)

ensuring gradients are non-zero.
The network begins with a 7x7 convolutional layer fol-

lowed by a pooling layer. Then we preform a series of
3x3 convolutions where input dimensions are persevered by
adding padding of 1. Each dotted line in figure 1 shows
where the dimensions of the input volume are reduced. This
is done by increasing the stride from 1 to 2, instead of a
max pooling operation. The structure of this is replicated
throughout the network in each of the colored layers. Fi-
nally our input is flattened into a FC layer. We then added a
sigmoid activation function to the final layer:

σ(x) =
1

1 + e−x
(4)

so that the output would be probabilistic. Our threshold was
set to .5 to determine the presence of solar panels.

3.2.2 Loss Function: Binary Cross-Entropy

Loss = −(y log(p) + (1− y) log(1− p)) (5)

We used binary cross entropy as our loss function as it is
standard for binary classification tasks. BCE is easily dif-
ferentiable and allows us to penalize the probabilities based
on the distance from the expected value.

3.2.3 Optimizer: Adam

Adam combines ideas from RMSprop and SGD with mo-
mentum to create an ideal optimizer. [14] It uses squared
gradients to scale the learning rate as training progresses by
vt. It also takes a moving average of the gradient mt. See
equation where g is the gradient of the current mini batch
and the betas are a hyper parameters with default values of
.9 and .999 respectively:

mt = β1mt−1 + (1− β1)gt (6)

vt = β2vt−1 + (1− β2)g
2
t (7)

Bias correction is preformed to generate m̂t and v̂t:

m̂t =
mt

1− β1
(8)

v̂t =
vt

1− β2
(9)

Finally the weights are updated using the following equa-
tion:

wt = wt−1 − α
m̂t√
v̂t + ϵ

(10)

3.2.4 Hyperparameters:

For our classification model, the main hyperparameters that
we focused on were batch size and learning rate. For our fi-
nal model, we trained on batch sizes of 16. Our final learn-
ing rate was set at 0.0005.

3.3. PV Segmentation

3.3.1 Model



For segmentation of PV’s, we decided to use a UNet ar-
chitecture designed in 2015 to process biomedical images
as seen in figure 2. [15] The network consists of a con-
tracting path (left side) and an expansive path (right side).
The contracting path behaves like a typical CNN, apply-
ing two 3x3 unpadded convolutions, followed by a ReLU
and 2x2 max pooling operation with a stride of 2. For each
downsampling block, the number of feature channels are
doubled. In the expansive path, the model consists of 2x2
up-convolutions that halve the number of feature channels.
Then a concatenation is preformed with the corresponding
feature map from the contracting path (visually the gray ar-
rows in figure 1) and two 3x3 convolutions-ReLU are ap-
plied. The final layer of the network is a 1x1 convolution
used to map the component feature vetcor to the desired
number of classes which is 2 in our case. We modified the
architecture to take 224x224 inputs instead of the original
512x512 images used by Ronneberger et al. Additionally,
we added a sigmoid activation function a the end of the net-
work to generate per-pixel probabilities for containing PV’s.

3.3.2 Loss Function: Dice-BCE Loss

Lossm−bce =

− 1

N

∑
i

β(y − log(ŷ)) + (1 + β)(1− y)(log(1− ŷ))

BCE-Dice Loss(y, ŷ) = αLm−bce − (1− α)DL(y, ŷ)

DL(y, ŷ) = 1− 2yŷ + 1

y + ŷ + 1

For segmentation, we implemented a combination be-
tween a binary cross entropy loss function and a dice loss
function. In a proper review [16] of an array of loss func-
tions applied to the task of image segmentation, Jadon et al.,
found a combination of binary cross entropy loss and Dice
loss to be competitive with other benchmark loss functions.
Compared to other loss functions, this performed better on
our task. The Dice-BCE Loss functions as a weighted sum
of the Dice and BCE loss functions. Binary Cross-Entropy
measures the difference between two probability distribu-
tions. For segmentation, this works well at a pixel-level.
The Dice coefficient is widely used as a metric in computer
vision to calculate the similarity between two images. It
was later adapted as a loss function.

3.3.3 Optimizer

For segmentation, we used the same optimizer (Adam) as
our classifier. Dice-BCE Loss fit the segmentation task
since we are outputting 224x224 binary masks giving the
probability of a pixel containing a PV. In essence, this is the
same as classification except on a per pixel basis. Adam
also works well here capitalizing on taking smaller steps as

we get closer to a global minimum while also keeping mo-
mentum as a weighted average of our steps at prior epochs.

3.4. Evaluation Metrics

3.4.1 AOC-RUC Curve

The AUC (area under the curve) ROC (receiver operating
characteristics) curve is a frequently employed evaluation
metric for checking or visualizing the performance of multi-
class classification. More specifically, the ROC is a proba-
bility curve, while the AUC indicates the measure of sepa-
rability — in other words how capable the model is at dis-
tinguishing between classes.

Now we will use the ROC curve, which is a curve of
probability, to plot the distributions of the overlap between
true positives and true negatives, to extract AUC, our evalu-
ation metric.

As we can see, because there is an overlap between the
true negatives and the true positives, our AUC evaluates to
a score of 0.7. This indicates to us that the model is able to
distinguish the difference between the positive and negative
classes 70% of the time. This evaluation metric is critical
for multi-class segmentation as it infers how well the model
does at segmenting classes accurately.

3.4.2 Intersection over Union (IoU)

Intersection over union is a common metric for segmenta-
tion models. It measures the overlap between two bounding
boxes or masks. This metric gives us information on if the
image was segmented correctly and how perfectly the im-
age was segmented. The formula for IoU is as follows:

IoU =
Area of overlap
Area of union

The IoU will analyze the output of the model with the output
label and calculate the IoU as a metric for how well the
model performed.

3.4.3 F1 Score

The F1 score is a popular metric in machine learning that
combines the precision and recall of a classifier. Let us de-
fine precision, which is the proportion of true positives over
all instances that were classified (true positive and false pos-
itive) as true in the model. Let us define recall, which is the



proportion of true positives over all instances that are true
(true positive or false negative) in the model. The F1 score
is thus:

F1 =
2 ∗ precision ∗ recall

precision + recall

We opted to use AUC-ROC as our primary evaluation
metric for classification over F1. AUC-ROC is essentially
F1 scores at various threshold probabilities so it is more ex-
planatory than an arbitrarily chosen threshold for F1.

4. Dataset

4.1. Description

Due to licensing restrictions and lack of solar cells in typ-
ical satellite images, there are very few publicly available
data sets for PV classification and segmentation. In 2016,
Bradbery et al. sought to decrease the information gap
in distributed solar PV arrays by producing a high quality
data set for PV detection which we use in our project [17].
The data set consists of 601 5000-by-5000 pixel TIF ariel
images and geospacial coordinates for over 19,000 solar
panels. Images span multiple cities in California (Fresno,
Stockton, Oxnard and Modesto) and contain a diversity
of landscapes including urban, suburban and rural regions.
Cities were selected to meet two criteria: (a) the spatial res-
olution had to be higher than 30cm to ensure every panel
would be represented by multiple pixels and (b) the regions
had to have a high density of solar cells to prevent class
imbalance. Each solar panel’s geospatial coordinates and
vertices were hand labeled by 2 annotators and the union of
the two labels were used as the final ground truth label.

4.2. Preprocessing

The data set required a significant amount of preprocess-
ing to get it in an acceptable form to pass into our U-Net
(see Appendix Figure 4). Initially, we passed in the im-
ages as well as their corresponding PV coordinates into a
mask generator that created a 5000x5000 boolean numpy
array mask with 0’s where solar panels were not present
and 1’s where they were present for each image (figure 3b).
The images were also converted to 3x5000x5000 arrays. To
generate more data and to allow our model to train more

efficiently we took 224x224 crops of the 601 satellite im-
ages and masks using centroid coordinates of the PV’s to
ensure our crops contained enough solar cells. This brings
our total dataset to 20,900 224x224 images to be fed into the
model. We randomly split the data using an 80-10-10 dis-
tribution for our training, validation, and test sets. The test
set contained a split of 48 percent negative samples and 52
positive samples, representing a balanced class distribution.
We used this existing code-base for prepossessing. [18]

5. Results
5.1. PV Classification

5.1.1 Architecture

For PV classification we used three channel satellite im-
ages with size 224x224 pixels. The data set of 2,090 im-
ages was devised as 80% for training, 10% for validation
and 10% for testing. All architectures were pretrained on
imagenet as this would give us a better weight initializa-
tion for the earlier residual layers in our network. Addition-
ally, we employed early stopping during training after we
saw validation loss not improve for 5 epochs. We selected
a ResNet-34 architecture for the model (see table 1). The
decision was based on prioritizing AUC-ROC over F1 (ex-
plained in Methods). We acknowledge that ResNet-50 may
have also been a suitable choice as it had the best F1 score of
.989 on the test set. Regardless, both of these out-preformed
the baseline .914 F1-score established by Stanford research
team Deep Solar who used an inception v3 architecture. [8]
We achieved a final ROC-AUC of .99 and F1 score of .95
which can be seen in figures 6 and 7.

5.1.2 Optimizer

Next we experimented with optimizers (see table 2).
RMSProp preformed significantly worse than Nadam and
Adam. We hypothesize that this is because RMSProp



doesn’t account for momentum of the weights and instead
just decays the update. Nadam and Adam both incorporate
momentum. We opted to choose Adam since the ROC-AUC
score outperformed Nadam. Nadam is a slightly more opti-
mized version of adam that works by looking ahead at the
next x to preform our current update. The update rule for
Nadam can be seen in figure 5.

5.1.3 Hyperparameters

The two hyper-parameters we experiment with are learning
rate and batch size.

From our results, we find that marginal benefits come
from a slightly smaller batch size when training our classi-
fier. As compared to a batch size of 32, a batch of 16 yields
an increase in AUC-ROC of .0002. Nonetheless, this is the
batch size that proved most optimal and is what our final
model was trained on.

Looking at the table above, we find that incremental
changes in the learning rate by a factor of 2 has a learning
rate of .0005 outperforming the other learning rates by a
small amount. As such, our final classification model trains
with a learning rate of .0005.

5.2. PV Segmentation

5.2.1 Loss Function

In line with the formal assessment of different image
segmentation loss functions [16], we chose to train on
5 different loss functions: Binary Cross-Entropy, Dice,
Binary Cross-Entropy Dice Combination, IoU, and Focal
loss. Different loss functions promise to address certain
aspects. BCE loss is standard for comparing probability
distributions between two sets. Dice score is a standardized
metric for comparing the similarity between images and
has been adapted to a loss function for training. BCE-Dice
loss combines the two aforementioned formulas and
benefits from a standard image segmentation metric and
assessment of probability distribution. IoU is another
standardized evaluation metric to compare the similarity
between two images which is adapted as a loss function.
Lastly, Focal loss can also be seen as a variation of BCE. It
down-weights ”easy” examples and enables the model to
focus more on ”hard” examples. It typically works well for
highly imbalanced datasets.

Overall, we find that the combination of BCE and Dice Loss
outperformed all other loss functions. Of note, the second
best is the uncombined Dice loss. The third best was the
BCE loss. As such, balancing the contributions of both
enables peak performance, as promised in previous anal-
ysis [16].

5.2.2 Optimizer

We decide to train using an Adam optimizer for simplic-
ity. Our experimentation timeline did not afford us suffi-
cient time to test different optimizers for our segmentor.

5.2.3 Hyperparameters

In our experiments, we tune the batch size to be able to find
the ideal trade off between a smaller and larger batch size.



A larger batch size implies less noisy gradients, but it ne-
cessitates more memory and is slower. A smaller batch size
would be more noisy; however, it would converge faster.
We evaluated differences in batch size performance using
IoU. Overall, it was determined that a batch size of 32 pro-
duced the greatest IoU score, and is thus the optimal batch
size for this model.

Analyzing the results our learning rate optimization, it is
clear that a learning rate of .001 outperforms both a higher
and lower architecture. Though more precise changes in the
learning rate could potentially make a difference, we found
this middle point to be the most optimal learning rate of
those we tested.

5.3. Visualization

6. Conclusion

In this paper, we present a solar panel segmentation model
that works to classify and segment solar PV’s in a given im-
age. The model divides the training portion into two phases:
a pre-trained Resnet34 model for classification and a U-net
model for segmentation. We experiment with multiple clas-
sification architectures, such as different forms of Resnet.
In addition, we experiment with other variables such as the
segmentation batch size, the optimizer, and segmentation
loss function. Our model produced promising results and if
we compare it with the likes of DeepSolar as a benchmark,



our model is able to classify solar PV’s more effectively.

6.1. Future Work

While our methodology seeks to converge on an optimal
model for solar panel segmentation from satellite imagery,
there are a few areas which could benefit from further
exploration. Given that we choose to use AUC-ROC as our
standardized evaluation metric for different classification
models, we deemed an Adam optimizer to be better than a
NAdam optimizer. That being said, if instead, the F1 score
was used as a standardized evaluation metric, a NAdam
optimizer could be considered more optimal. As such, in
the future, further exploration should be done to evaluate
the performance of a classifier using a NAdam optimizer
with the various other hyperparameters that were tuned. By
the same logic, a different architecture may have proven
more optimal as well. Table 1. shows how a Resnet50
may have outperformed other Resnet architectures if the
evaluation were the F1 score. Therefore, further tests
should be done to evaluate this architecture compared to a
Resnet34 with optimally tuned parameters.

Lastly, for the segmentation task, it is most common to
see U-Net architecture. However, that does not mean that
a different architecture such as a Joint Pyramid Upsam-
pling module, as in FastFCN [19], a two-stream Gated
Shape CNN, as in Gated-SCNN [20], an Atrous CNN, as
in DeepLab [21], or a pixel-wise bounding box and se-
mantic segmentation CNN, as in Mask R-CNN [22], would
not have performed better. Future work should include
a broader exploration of different architectures potentially
suited to this task.

7. Contributions
This research would not be possible without code provided
from fastai for initial models as well as gabrieltseng for data
preprocessing (see refrences).
We also could not have done this work without the follow-
ing python libraries (numpy, pytorch, sklearn, matplotlib,
PIL). [23] [24] [25] [26] [27]

Spencer Paul was responsible for initial research into
PV segmentation and selection of the model architectures
alongside Rodrigo Nieto. He also was responsible for writ-
ing the abstract, methods and results section of the paper.
Additionally, he wrote the evaluation and visualization
code for graphics in results section. He helped with training
and experimentation although the majority was done by
Ethan Hellman.

Ethan Hellman was responsible for model experimentation
and designing the research process so as to evaluate

hyperparameters, loss functions, and architectures. He did
the majority of training for the models. Additionally, Ethan
Hellman was chiefly responsible for the sourcing of data.
This includes the final dataset used in this study. He also
supplied coffee for everyone.

Rodrigo Nieto was responsible for the election of the PV
segmentation and selection model with Spencer Paul. In ad-
dition, Rodrigo Nieto researched and procured the literature
and state-of-the-art models of current solar PV segmenta-
tion projects to be able identify promising techniques, archi-
tectures, and to build a better understanding of our bench-
mark. He was also involved in the data pre-processing por-
tion of the project.

8. Appendix
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