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1 Introduction

The advancement of language processing through models like BERT[1], GPT [2], and CLIP [3]has
been a game-changer. Yet, the potential of multi-modal vision-language models (VLMs) in addressing
critical issues like climate change remains largely untapped. Our project explores this frontier,
leveraging AI and remote sensing—a combination proving vital in sectors from agriculture to urban
planning—to tackle climate change. In this study, we explore the application of prompt learning
strategies to enhance vision-language models (VLMs), an approach that could significantly improve
AI’s role in environmental conservation. Our research is focused on addressing two key questions:

1. Which prompt learning strategies, among CoOp[4], MaPLe[5], and PromptSRC[6], are most
effective for remote sensing tasks?

2. How does prompt learning affect domain-specific models compared to general models like
CLIP[3] and RemoteCLIP[7]?

Our investigation involves a rigorous evaluation of these strategies on two foundational models, across
two remote sensing datasets (EuroSAT[8] and RESISC45[9]), focusing on the accuracy of remote
sensing scene classification. This work doesn’t just aim to contribute to the academic discourse but
seeks to open new avenues for AI applications in environmental conservation.

2 Related Work

2.1 Vision-Language Models

Advancements in vision-language models like CLIP (Contrastive Language-Image Pretraining) by
OpenAI have revolutionized multi-modal data processing with their zero-shot learning capabilities
and alignment of text and image representations [10]. Furthermore, MAE (Masked Autoencoders)
extends to vision-language contexts, addressing the convergence of language and vision model
geometries [11][12]. ViLBERT and LXMERT set new benchmarks in multimodal processing with
their innovative architectures [13][14][15]. VisualBERT and FLAVA contribute with their simpler
yet effective approaches in multimodal interpretation [16][17].

2.2 Remote Sensing Vision-Language Foundation Models

Remote sensing vision-language models have witness recent evolution with RemoteCLIP (2023)
adapting the CLIP framework for remote sensing [7], SatMAE (2022) addressing satellite imagery
challenges [18], and Dino-MC (2023) introducing self-supervised learning [19]. These models
represent significant advancements in remote sensing analysis, improving data interpretation and
handling diverse environmental scenarios. That being said, the mantle of state-of-the art is still yet to
be claimed and substantiated by a comprehensive study.
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2.3 Prompt Learning

Prompt learning has shifted from manual methods to automated approaches like Context Optimization
(CoOp), which introduces learnable vectors for context words in prompts [4]. Conditional Context
Optimization (CoCoOp) and Multi-modal Prompt Learning (MaPLe) further this evolution by enhanc-
ing generalizability and adapting both vision and language branches [20][5]. Recent methods like
RetroPrompt and HealthPrompt expand the application of prompt learning with retrieval-augmented
and clinical-text-focused techniques [21][22], demonstrating a trend towards more efficient prompt
learning strategies. While further study is merited, MaPLe remains the state-of-the-art in published
prompt-learning strategies.

3 Dataset and Features

Our study evaluates various Vision-Language Models (VLMs) using two prominent remote sensing
image classification datasets: EuroSAT [8] and RESISC45 [9].

3.1 EuroSAT

EuroSAT is based on Sentinel-2 satellite imagery and comprises 27,000 images categorized into
10 classes, including AnnualCrop, Forest, HerbaceousVegatation, Highway, Industrial, Pasture,
PermanentCrop, Residential, River, and SeaLake. Each image is 64x64 pixels with a 10m spatial
resolution. The dataset is divided into 13,500 training, 5,400 validation, and 8,100 test images. To
align with our focus on few-shot learning scenarios, the models are trained on a limited subset of the
training and validation images, while evaluations are conducted on the complete test set.

3.2 Remote Sensing Image Scene Classification (RESISC)

The RESISC45 dataset encompasses 31,500 remote sensing images from nearly 100 countries,
distributed across 45 scene classes. Each class comprises 700 images of 256x256 pixels with RGB
channels. The spatial resolution ranges between 30 to 0.2 meters per pixel for most scenes. The
dataset split includes 15,750 training, 6,300 validation, and 9,450 test images.

4 Methods

4.1 Prompt Learning Strategies

The Context Optimization (CoOp)[4] framework presented in this study advances the adaptation of
pre-trained vision-language models for specific image recognition tasks. CoOp innovatively employs
learnable vectors to model the context words in prompts, leaving the original pre-trained model
parameters unaltered. It features two key variants: a unified context model applicable across all
classes, and a class-specific context model with unique context tokens for each class. To illustrate,
the prompt t that is fed to the text encoder g(·) (to generate a classification weight vector) can be
represented as the following,

t = [V ]1[V ]2...[V ]M [CLASS], (1)

where each [V ]m(m ∈ {1, ...,M}) is a vector with a dimension of 512 and M indicates the number
of context tokens [4]. This method is optimized using cross-entropy loss to minimize prediction
errors. Significantly, CoOp demonstrates superior performance on various datasets compared to
manually crafted prompts and enhances data efficiency overall. We chose to include this approach
in our study given that CoOp largely kicked off the study of prompt learning and sets an effective
baseline against other approaches.

Next, we utilize MaPLe [5], a novel prompt learning strategy that builds off of the work of CoOp.
MaPLe is distinct in several ways. Firstly, in addition to the language prompting outlined in CoOp,
MaPLe employs vision prompting in the image encoder as well. The prompts in the vision branch are
conditioned on the language prompts via a coupling function to enforce synergy between them. This
coupling function is learned with the prompts fine-tuning. Secondly, MaPLe uses a deep prompting
strategy in both the vision and language branches of the model; in addition to adding context to
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the initial text and image inputs, each transformer layer in the vision and text encoders receives a
learned prompt derived during fine-tuning. The prompted layer depth is a hyperparameter that can
be tuned. For our method, we opt to use a prompt depth of 9 since that was found to be optimal in
the MaPLe paper. This approach was selected given that it has remained as the state-of-the-art for
prompt learning over the past couple of years.

Lastly, we explore PromptSRC [6], a more recent framework for fine-tuning vision-language models
that promises to address overfitting issues observed in other prompt learning strategies. This approach
leverages a three-pronged self-regulating approach: 1) Mutual Agreement Maximization, aligning
prompted features with frozen model features; 2) Self-Ensembling of prompts, using a weighted
aggregation across the training trajectory; and 3) Textual Diversity, enriching text encodings for
each class. This framework guides prompt optimization for task-specific and general representations,
enhancing both performance on downstream tasks and preserving the generalization capabilities of
the pre-trained model. Extensive experiments across various benchmarks demonstrate PromptSRC’s
efficacy in maintaining robust generalization while optimizing task-specific knowledge. It is for these
reasons, and the added potential of beating SOTA, that we include PromptSRC in our study.

4.2 Model Selection

Given the widespread popularity of CLIP-based models, ease of implementation, and inability to
compare across all remote sensing foundation models due to resource constraints, we elected to study
the behavior of RemoteCLIP [7], the first vision-language foundation model tailored for remote
sensing. It addresses the scarcity of pretraining data in this domain by leveraging a novel data scaling
technique, which converts heterogeneous annotations into a unified image-caption format. This
approach uses Box-to-Caption (B2C) and Mask-to-Box (M2B) conversions to enhance data diversity.
RemoteCLIP, trained on this enriched dataset, excels in various downstream tasks, including zero-shot
image classification and object counting, outperforming existing models and demonstrating robust
generalization across diverse datasets. This model marks a significant advancement in the application
of vision-language models to remote sensing and promises to serve as a strong backbone for studying
various prompt learning strategies.

5 Experiments/Results/Discussion

5.1 Overview

Our study aims to provide novelty in 3 ways:

1. Consistent Comparison: While all three of the aforementioned prompt learning strategies
have been successful on a variety of datasets including EuroSAT, there has yet to be a
consistent comparison of them in the context of remote sensing. Other inconsistencies, such
as MaPLe only reporting results in a 16-shot setting, make comparing approaches difficult.
Additionally, the authors claim better results than CoOp while training for fewer epochs (5 v
10). Finally, papers may also use differing backbones and versions of CLIP. As such, in our
study, we provide consistent comparison across models for more effective comparison.

2. Deeper Exploration of Remote Sensing: EuroSAT is the only remote sensing dataset used
in previous evaluations of these strategies. It is a relatively easy dataset given its limited
number of classes. By introducing RESISC45, we offer deeper insight into how these
models perform in the remote sensing domain.

3. Domain-Specific Foundation Models vs. General Models Learning Prompts on Domain-
Specific Tasks: We address the question of whether it is more efficient to prompt-tune a
generally pretrained foundation model or a domain-specific finetuned model for remote
sensing tasks. Additionally, we provide insight into how prompt learning strategies relatively
improve generally pretrained and domain-specific finetuned foundation model performance.

5.2 Experimental Settings

To mirror real-world scenarios where data is limited, we evaluate all combinations of models +
prompting in a few-shot setting (1, 2, 4, 8, and 16 shots). The number of shots is the number of
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training examples in each class that the models see during training. Datasets are sampled with a
common seed to ensure consistency in training data. Training is done for 10 epochs in all experiments
with a batch size of 4. For both CLIP and RemoteCLIP, we use a ViT-B/32 backbone and an ADAM
optimizer. All prompts are initialized to "a photo of a," following the handcrafted prompts in the
RemoteCLIP study[7]. In addition to shots, we experiment with the number of context tokens in
prompts with 2 and 4 context token length settings. Existing prompt learning research will often test
for generalization to novel classes. For the scope of our project, we allowed the models to see all
classes they are evaluated on during training. This change along with modifying hyperparameters
explains the discrepancy in results for similar experiments in prior work.

5.3 Results

Figure 1: Comparison of accuracy scores amongst different models and prompt strategies across
EuroSAT and RESISC45 with varying prompt lengths and shots.

5.4 Discussion

5.4.1 EuroSAT Performance

MaPLe + CLIP with a prompt length of 4 is the strongest performing model + prompt learning strategy
pair on EuroSAT achieving an accuracy of 90.6% in the 16-shot setting. This substantially outperforms
RemoteCLIP and CLIP baselines of around 81% and 79% in the 16-shot setting respectively[7].
PromptSRC + RemoteCLIP with a prompt length of 4 is the highest-performing domain-specific
model achieving an accuracy of 86.9% which also notably outperforms the CLIP and RemoteCLIP
baselines. Interestingly, the PromptSRC + CLIP performance is quite strong regardless of the
number of shots, outperforming CLIP 16-shot accuracy with only 4 shots. The only prompt learning
strategy that underperformed compared to hand-crafted prompt baselines is CoOp with both CLIP
and RemoteCLIP.

5.4.2 RESISCS45 Performance

We can see that, unlike the results on EuroSAT, the RemoteCLIP models with prompt learning
strategies outperformed the vanilla CLIP model on the RESICS45 dataset. The highest accuracy on
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RESISC45 was achieved by MaPLe + RemoteCLIP in the 16-shot setting with a prompt length of
2 yielding an accuracy of 86.3%. Although these results differ from those on EuroSAT, they meet
expectations given that the vanilla RemoteCLIP model largely outperforms the vanilla CLIP model on
RESISC45 (with a delta of +9.41 [7]). However, we see that the CLIP model with prompt learning
is actually able to close the gap between the accuracies on RemoteCLIP compared to CLIP without
prompting as tested in the RemoteCLIP study [7]. (86.3% to 82.1% constituting a delta of +4.2
instead of +9.41) [7].

5.4.3 Shot Analysis

For all graphs in Figure 1, we can expect better accuracies across all settings as the number of
training shots per class increases. However, it is interesting to note that some model and prompt
learning combinations vastly improve with changes in the number of shots, such as MaPLe with CLIP
compared with PromptSRC with CLIP. Additionally, we can see that the impact of prompt learning
with an increased number of shots looks different for the two datasets. More specifically, it appears
that prompt learning with a greater number of shots has a greater impact on performance with the
EuroSAT dataset compared to increasing the number of shots on given the RESISC45 dataset.

5.4.4 Model Comparison

CLIP with prompt learning on average beats RemoteCLIP with prompt learning on the EuroSAT
dataset across the board. However, RemoteCLIP with prompt learning generally does better than
CLIP with prompt learning on RESISC. We believe this discrepancy can be attributed to the difficulty
of the datasets. Given EuroSAT’s limited class size and variability, a general foundation model may be
able to generalize to it easily with a limited number of fine-tuned prompt samples. While RemoteCLIP
outperforms CLIP on RESISC45, the boost in performance comes mainly from the model being
fine-tuned on thousands of satellite images, not prompt learning. Notably, however, prompt learning
closes the overall gap between the two models suggesting that generally pretrained foundation models
with domain-adapted prompts are more efficient learners than domain-specific finetuned foundation
models with domain-adapted prompts. This potentially has significant implications given the time,
data, and computation costs associated with training a domain-specific foundation model. Whereas
training a RemoteCLIP or similar domain-specific model can achieve SOTA performance with
domain-adapted prompts, similar performance can be seen with generally pretrained vision-language
models. This inherently raises questions about the trade-offs between performance and resource
constraints.

5.4.5 Prompt Length

Overall, prompt length seems to have minimal impact on performance. The only notable observation
is that MaPLe performance is less stable across shots with a prompt length of 4. We see dips at
two and eight shots for CLIP and RemoteCLIP. This suggests that MaPLe may be less robust to
fewer-shot training and is arguably why their authors only included 16-shot performance results in
their paper.

6 Conclusion/Future Work

In conclusion, we find that prompt learning can be an effective strategy to boost performance on
remote sensing datasets for vision-language models. Additionally, we see the strongest prompting
strategies are MaPLe and PromptSRC. Finally, we conclude that when altering foundation models for
the domain-specific task of remote sensing it would appear more data, compute, and time-efficient to
prompt tune a general foundation model like CLIP rather than train a domain-specific foundation
model and subsequently perform additional prompt tuning. While remote sensing vision-language
models can see performance gains over generally pretrained models, the difference is minimal. Thus,
we question the merit of extensive pretraining for such marginal gains.

While we conclude that it is more effective to prompt tune a foundation model rather than train a
domain-specific foundation model, this hypothesis could be more rigorously explored with more
out-of-domain remote sensing datasets as well as comparison across different remote sensing vision-
language foundation models. Despite our preliminary analysis, a more holistic study could further
support our findings.
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7 Contributions

All team members contributed equally to developing the methodology, running experiments, and
writing the paper.
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